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Abstract

The relationship of the concentration of air pollutants to wind direction has been determined by nonparametric
regression using a Gaussian kernel. The results are smooth curves with error bars that allow for the accurate
determination of the wind direction where the concentration peaks, and thus, the location of nearby sources. Equations
for this method and associated confidence intervals are given. A nonsubjective method is given to estimate the only
adjustable parameter. A test of the method was carried out using cyclohexane data from 1997 at two sites near a heavy
industrial region in Houston, Texas, USA. According to published emissions inventories, 70% of the cyclohexane
emissions are from one source. Nonparametric regression correctly identified the direction of this source from each site.
The location of the source determined by triangulation of these directions was <500 m from that given in the inventory.
Nonparametric regression is a powerful technique that has many potential uses in air quality studies and atmospheric
sciences. © 2002 Elsevier Science Ltd. All rights reserved.
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1. Introduction

The problem addressed here is estimating the wind
direction that gives a local maximum in the observed
average concentration of an atmospheric species, i.e.,
finding the directions of peaks in the concentrations.
This direction is taken as the direction of the source,
assuming that the source is not too distant. Finding the
location of a nearby source is important in identification
of the causes of local toxic “hot spots” and reconcilia-
tion of emission inventories observed concentrations, to
give two examples. Somerville et al. (1996) present a
classic parametric modeling approach to this problem.
In this paper, an alternative nonparametric approach is
taken. This approach is related to the kernel density
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counting procedure proposed by de Haan (1999) for
certain air quality models. There is an enormous
statistical literature on nonparametric regression.
Hérdle (1990) gives a very good introduction to this
literature and the more practical aspects of the subject.
As will be seen, nonparametric regression is a powerful,
well-developed method with many possible applications
to air quality studies and, indeed, atmospheric sciences
in general.

It is very difficult to locate even a single strong peak
accurately from a simple scatter plot of the data versus
hourly resultant wind direction. This is seen in Fig. 1, a
scatter plot of hourly concentrations of cyclohexane
observed during 1997 at the Deer Park site near the
Houston ship channel in Houston, Texas, USA, an area
dominated by large refineries and petrochemical indus-
tries. The wind speed and direction were measured at the
site. The wind direction is the azimuth angle (measured
clockwise from north) that the wind is blowing from.
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Fig. 1. Hourly cyclohexane measured at Deer Park during 1997

versus the azimuth of the wind direction.

The figure clearly shows high concentrations when the
wind comes from between 0° and 50° and between 300°
and 350°, but that is about all that can be said.

The usual method of analysis of the data in Fig. 1 is to
group the data into bins of width A0 based on wind
direction and calculate the average concentration in each
bin. The result can be displayed as a simple bar chart as
in Fig. 2 or as a polar chart. Polar charts are not used
here because small peaks are forced into an area near
the origin, making them hard to see. In Fig. 2 the bins
are 10° wide and start at 0°. When the wind speed is low,
the direction is not well determined, consequently all
hours with wind speed <1mile/h were excluded from
Fig. 2. It is now clear that the data possess several peaks,
including a large peak around 330°; but a more precise
estimate of the peak location is not possible for reasons
discussed next.

Bar plots such as Fig. 2 have major limitations for the
problem at hand. The location of the peaks is highly
dependent on the choice of the bin size A0 and the
location of the boundaries of the bins. Peaks that
are closer together than 2A0 may not be resolved and the
location of a peak maximum cannot be estimated to
better than + A0, at best. This is less of a problem if Af
can be made as small as a degree or two. With bins this
small, however, almost always there are many bins in the
less frequent wind directions that will have too few
observations. In practice, even with hourly data for an
entire year, bin size can seldom be made <10°.

In addition to the large peaks, several small peaks are
seen in Fig.2 at about 170°, 220°, 260°, and 290°.
Which, if any, of these are real peaks and which are just
random fluctuations in the data? Reliable error bars (or
confidence intervals) would help answer these questions.
For large peaks, confidence intervals would put bounds
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Fig. 2. Bar chart of average cyclohexane in 10° bins starting at
zero.
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on the peak height and provide a measure of the error in
peak location.

Based on the above discussion, a method is needed to
estimate the location of large peaks more precisely and
reliably separate peaks that are close to each other. The
method should produce statistical confidence intervals.
Finally, any parameters needed by the method, such as
bin size in the bar chart, should be estimable by a
reproducible, quantitative algorithm, to reduce the
subjectivity of the analysis.

Such a method with all these properties exists and is
known in the statistical literature as nonparametric
regression. The following section will briefly introduce
the method. This is followed by the application of the
method to cyclohexane data from two sites in Houston,
Texas. Cyclohexane is chosen to test the method because
70% of the industrial emissions in the region are known
to be from a single source. Thus, the intersection of two
lines drawn from each site in the direction of the largest
peak should be the location of this source. The success
of the method can be judged by how closely the
predicted position of the source corresponds to the
known location.

2. Nonparametric regression
2.1. Kernel estimators

One obvious improvement that overcomes some of
the problems of a simple bar chart is to average over a
sliding window of width A0 centered at 0. Let the
observed average concentration for the time period
starting at #; be C;, where i=1,...,n observations.
Further, let the resultant wind direction for the ith time
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period be W;, then the average concentration in the
sliding window centered at 0 is

&)= NS KO - WG, M
i=1

where K(x) =1, for x — A0/2<x<x+ AB/2, and zero
otherwise, and N is the number of data points inside the
sliding window. Fig. 3 shows the results of this method
applied to the same data as Fig. 1. This is certainly an
improvement over Fig. 2, but the curve in Fig. 3 is not
very smooth, which makes determining peak locations
difficult. The problem is that the function K gives equal
weight to all the measurements inside the sliding
window. A more reasonable approach would be to give
less weight to observations near the edges, as shown
next.

To generalize Eq. (1), it is important that A6, also
called the smoothing parameter, appear explicitly in the
equation, so Eq. (1) is rewritten as
Yo K0 — W) /AO)C;

S K(O— W)/A0)
where K(x) = 1 for —3<x<, and zero otherwise. Note
that the denominator is simply a complicated way
of writing N, the number of data points for which
0 — AO/2< W;<0 + A0/2. In this form the equation can
be generalized by taking K(x) to be any continuous
function of x such that

/oc K(x)dx = 1. (3)

(6, A0) = 2

There are many possible choices for K, two of the most
often used are:
The Gaussian kernel

K(x) = 2n) " 2exp(—0.5x%), —o0<x< o0, )
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Fig. 3. Moving average cyclohexane concentrations calculated
using a 10° wide sliding window.

and the Epanechnikov kernel
K(x)=0.751 - x%), —-1<x<I. (3)

Both of these kernels will give maximum weight to
observations near 0 and less weight to observations
further away. The major difference between the two is
that the Gaussian kernel is defined over an infinite
domain and the Epanechnikov kernel is defined over a
finite range. For wind direction and other circular data
the Gaussian kernel is preferred. For data limited to a
finite range the Epanechnikov kernel has less bias at the
end points and is preferred, and, under certain condi-
tions, can be shown to converge to the true expected
value at the optimal rate.

The primary nonparametric regression estimator for
this paper is given by Eq. (2) with the Gaussian kernel.
Technically, this is an example of a Nadaraya—Watson
estimator, which is known to be consistent, that is, as
sample size increases the value of the estimate will
converge to the true value (Hardle, 1990, p. 25). Fig. 4
shows the result of using this estimator on the Deer Park
cyclohexane data. The plot is much smoother than the
moving average plot in Fig. 3. The gray region
surrounding the curve in the figure is the 95%
confidence interval, which will be discussed later.

The smoothing parameter for Fig. 4 was chosen to
produce results somewhat comparable with the 10° bins
in Fig.2. To this end, we define the smoothing
parameter in terms of the Full Width at Half Maximum
(FWHM), an intuitive measure of the width of the
kernel function. It is simply the full width of the peak in
K measured at the point where the curve has fallen to
half its value at the peak. For the Gaussian kernel, the
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i i i i i
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i i
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Fig. 4. Nonparametric regression of cyclohexane versus wind
direction using a Gaussian kernel with a 10° FWHM. Data with
wind speed <1 mile/h are excluded. The gray region is the 95%
confidence interval.



2240 R.C. Henry et al. | Atmospheric Environment 36 (2002) 2237-2244

FWHM and smoothing parameter are related by
FWHM = /2A0. (6)

Thus, since the FWHM is 10, the Gaussian smoothing
parameter (usually called the standard deviation) for
Fig. 4 is 10/y/2 = 7.07. In the following, the FWHM
will be used as a more intuitive surrogate for the
smoothing parameter.

The connection of the smoothed data plot in Fig. 4
and the usual concept of regression is not immediately
obvious. What justification is there for calling this form
of data smoothing a regression? The answer is obvious if
one writes the simple linear regression formula in an
alternate way. The usual simple parametric regression
model with one variable is

y=ax+b+e, 7

where a and b are parameters to be estimated and ¢ is
random error. However, statisticians often prefer to
think of regression in terms of the expected value of y
given x, using the standard notation the simple straight
line regression equation becomes:

E(|x) = ax + b. (8)

In this way of looking at regression, Fig. 4 gives the
estimated expected value of the concentration (y) given
the wind direction (x), and thus can be thought of as a
regression model without parameters.

2.2. Choosing the smoothing parameter

The most important decision in nonparametric
regression is the choice of the smoothing parameter,
or, equivalently, the FWHM. If the FWHM is too large
the curve will be too smooth and peaks could be lost or
not resolved. If it is too small the curve will have too
many small, meaningless peaks dominated by noise or
large peaks may resolve into false multiple peaks.

There are several ways to select the best smoothing
parameter. This paper applies the cross validation
method (Hardle, 1990, p. 152). For each observed wind
direction W;, j=1...n and associated concentration
C; = C(1)) use Eq. (2) to estimate the expected concen-
tration, but leaving out the jth observation, i.e.

S, KW, = W)/A0)C,

Z,‘¢jK((u/j - Wi)/Ae) '
The optimal smoothing parameter is the one that
minimizes V' (A0), the mean squared difference between

concentration estimated leaving out one observation and
the observed concentration:

G(W;, A0) = ()

V(A0) =Y (G — (W}, A0)). (10)
J=1

For the Deer Park data in Fig. 4, the minimum of V

occurs at a FWHM of 7. This is close to the value of 10

used in Fig. 4 but indicates that Fig. 4 may be somewhat
over-smoothed.

2.3. Confidence intervals

The confidence intervals in Fig. 4 are calculated from
formulae based on the asymptotic normal distribution
of the kernel estimates. The sample estimate of the
variance of the asymptotic distribution of C(0,A0) is
given by (Hérdle, 1990, pp. 98-101)
cxa(0)

2 _
SO =, Aofoy

where

“ 1
k= / K2(x) dx:z—
— 00

N
I (- W,
=m0y K (51).

and

, for a Gaussian K,

70 = ooy 3K (V") co.nnr. an
i=1

Thus, if ¢, is the (100 — @)-quantile of the normal
distribution (1.96 for ¢ = 0.025) the confidence limits on
C(0, AO) are given by

(6, AB) + c,s(6). (12)

If a = 0.025, then the expression above gives a two-sided
95% confidence interval. This is shown as the gray
shaded area of Fig. 4. From these confidence intervals, it
is obvious that the small peak near 170 is real but the
peaks near 260 and 290 are not. The peak near 220 is not
an obvious call and requires further analysis.

2.4. Bias and serial correlation in nonparametric
regression

This type of nonparametric regression has some
obvious drawbacks, chief among these being bias. Since
the data is being smoothed, the peaks usually will not
be quite as high or sharp as in reality. This bias is an
inevitable result of the smoothing. Bias can be estimated
by simply using the output curve in Fig. 4 as the input to
the nonparametric regression. The bias estimate is
the difference between the twice-smoothed curve and
the once-smoothed curve. This estimate for bias is called
the plug-in bias estimate. Calculated this way, the bias in
Fig. 4 is <10% at the peaks, and much less than this
elsewhere. Because the bias is small in the examples
considered here, it will be ignored in the rest of the
paper.

Atmospheric concentration data, especially the hourly
averages considered here, often have a high degree
of serial correlation induced by the effects of meteor-
ology and diurnal emission patterns. Fig. 5 shows the
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Fig. 5. Autocorrelation function for the hourly concentration
data used in Fig. 4.

autocorrelation function for the concentration data used
in Fig. 4. The correlation with the next hour is 0.45 and
rapidly drops off rising again to 0.0835 at a lag of 24 h.
The autocorrelation function for the residuals of the
nonparametric regression in Fig. 4 is very similar as is
the autocorrelation function for the Clinton Dr. data.
This type of positive serial correlation may make the
actual confidence intervals larger than those estimated
by the methods of the previous section. Unlike bias, due
to the fact that the data is not evenly spaced because
only strong winds are used to estimate peaks, there is no
simple way to estimate the effects of serial correlation on
the confidence intervals. One must simply realize that
the estimated confidence intervals are almost surely a bit
too small. The possible effects of this on the results in
this paper are discussed next.

In this paper, the confidence intervals are used in two
ways; first, in a subjective way to judge if a peak is
merely noise or not. A small peak that has small
confidence intervals is likely to be a real peak, while a
peak with large confidence intervals is likely to be noise.
If the estimated confidence intervals are too small
because of serial correlation, the worst result would be
the possible acceptance of a peak as real when it is not.
The second use of confidence intervals in this paper is to
make a rough estimate of the uncertainty in the peak
location by drawing a horizontal line at the peak. The
intersection of this line with the upper confidence
interval curve gives the lower and upper limits on
the peak location. If the estimated confidence limits are
too small, then the range for the peak locations will also
be too small. The worst possible result is that the true
source may lie outside where it is predicted to be.
However, as shown below, this was not found to be a
problem in the application of these methods to the

Houston cyclohexane data, where the true locations of
the peaks were known.

For this paper, which uses peak locations to
determine the locations of an emission source, a
more significant question is if serial correlation in
the data increases bias in the estimate of the peak
location. One can show that this is not the case and thus
it has no effect on the estimates of source location that
are the main subject of this paper and the following
sections.

3. Application to 1997 Houston cyclohexane data
3.1. Data

Concentration data for cyclohexane and other volatile
organic compounds (VOCs) for the year 1997 were
obtained from the US Environmental Protection Agen-
cy’s (EPA) Photochemical Assessment Monitoring
Stations (PAMS) database. Hourly concentrations from
an automated gas chromatograph from two sites were
available. The two sites, Deer Park and Clinton Drive,
are shown in Fig. 8 in context with nearby 1997
emissions of VOCs taken from the EPA’s AIRS
database. This database does not have emissions of
individual species, unlike the Air Toxics Emissions
Inventory. Extracted from the air toxics inventory,
Table 1 lists all the emissions of cyclohexane for the year
1997 in Harris County, Texas, which includes the city of
Houston and the Houston Ship Channel, an area of
major petroleum refining and petrochemical industries.
Table 1 shows that one company, Phillips Petroleum, is
the source of almost 70% of the emissions in the
inventory. Thus, one would expect that high concentra-
tions of cyclohexane would be associated with wind
directions at the sites coming from this facility. Lines
drawn in the direction of the maximum cyclohexane
concentrations from the two sites should intersect near
the location given for the source in the inventory. The
accuracy of the nonparametric regression can be judged
by how close the estimated position is to the putative
position.

3.2. Results

Figs.6 and 7 are the result of nonparametric
regression of cyclohexane on wind direction at the two
sites using optimal FWHM values. Much of the wind
data at the Clinton Drive site was missing. Thus, the
wind direction and speed data from Deer Park were used
in the analysis of both sites. The two sites are only
14.33km apart and the terrain is very flat, so it is
expected that the wind data at one site will serve for
both. Fig. 6 is for Deer Park but it is not the same as
Fig. 4 for two reasons. Only data with wind speed >6
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restricted to hours where the wind speed is > 5 miles/h
(8 km/h) since the source is 7.91 km from the site. Using
the known location of the source to restrict the data is
not a case of unacceptable circular reasoning (using the
source location to estimate the source location). Data
for all wind speed >1mph could have been used to
estimate the location of the peaks and get an approx-
imate location of the source. From this the approximate
distance of the source to the sites can be estimated,
which would lead to the same result without prior
knowledge of the source location.

Table 2 gives the wind direction and the expected
concentration of the four largest peaks in Figs. 6 and 7.
The nonparametric regression calculations were carried
out for each whole degree from 0 to 359. Thus, to get the
entries in Table 2 it was necessary to interpolate to find
the peak locations with greater precision than 1°. If the
data are equally spaced with spacing /& and local
maximum C(xg), then the interpolated maximum is

Fig. 8. The location of the Phillips Petroleum source in the
inventory is shown as a star; the estimated location is marked as
*. The Deer Park site is the x and the Clinton Drive site is the
+. The gray shaded areas are water bodies. The circles are
VOC sources with the area proportional to the annual
emissions. Dash-dotted lines are railroads.

P = 2(Clxg — h) = 2C(x0) + Clxo + h))

at xo + ph, where

(Clxo —h) = Clxo + h))

(13)

The interpolated maximum concentration is given by

C(xo + ph)~ 0.5p(p — 1)Clxo — h) + (1 — p*)C(x0)
+0.5p(p + 1)C(xo + h). (14)

Both these formulae are from Abramowitz and Stegun
(1972).

3.3. Comparison to known sources

The sources in Table 1 can now be compared with the
peaks in Table 2. A measure of the uncertainty of the
peak locations is helpful in this comparison. Table 2
gives very conservative ranges for the peak locations
that are calculated by drawing a horizontal line through
the peak and reading its intersection with the upper
confidence boundary. Not surprisingly, at both sites the
largest peak has an azimuth consistent with the location
of the largest source in the inventory. For Clinton Drive,
the second largest source in the inventory also lies in the
azimuth range of the largest peak in Fig. 7. This may
explain why this peak is so broad. The second largest
peak for Clinton Drive is at 160, which corresponds well
with Valero Refining in the inventory. Valero only
accounts for 4.79% of the emissions but it is located
only 1.17km from the monitoring site. It seems reason-
able to associate this peak with this source. The
remaining two small peaks in Fig. 7 do not correspond
to any source in Table 1. These could be emissions
associated with nonindustrial sources such as roadways.
At Deer Park, the location of the second largest peak in
Fig. 6 corresponds closely with Enichem Americas in
Table 1. However, the location of the source is given an
accuracy of only 11km, so one cannot definitely
associate this peak with this source. The remaining
two small peaks in Fig. 6 do not correspond to any
sources in Table 1.

Table 2
Largest peaks in the nonparametric regression of cyclohexane on wind direction, Figs. 6 and 7

Maximum Deer Park Maximum Clinton Drive

Azimuth Azimuth range Azimuth Azimuth range

Peak 1 14.953 329.12 325.64-332.68 7.197 86.43 80.56-92.76
Peak 2 5.391 43.72 40.68-46.96 4.251 160.04 153.90-166.21
Peak 3 2.197 21.60 15.51-25.01 1.147 332.63 326.37-340.20
Peak 4 1.775 168.89 165.87-171.44 1.027 240.95 235.12-248.86
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3.4. Location of the largest source

The location of the Deer Park and Clinton Drive sites
as given by the AIRS database are 29.6694°N,
95.1281°W, and 29.7333°N, 95.2569°W, see Fig. 8.
Using these positions and the azimuth of the largest
peaks the estimated location of the source is 29.7378°N,
95.1751°W. (All calculations involving longitude and
latitude and distances were performed using functions
from the Matlab Mapping Toolbox.) The distance
between this and the location given in Table 1 is
0.436km. As seen from the Deer Park site this distance
corresponds to an error of 2.7°, or 3.2° as seen from
Clinton Drive. The best that could be done from the bar
chart in Fig.2 would be to estimate the location to
+20°. It is fair to say that the nonparametric regression
method is a major improvement and that the source
location predicted by the nonparametric regression is in
good agreement with the inventories. Now that this
technique has been validated, it may be applied to other
chemical species in the air that are not dominated by a
single source. The results will help reconcile the
emissions inventories to observed concentrations.

4. Discussion

In obvious extension of this method, the wind
direction analysis presented here can be applied to the
source contributions estimated from receptor models.
The results should be sharper that using chemical species
that usually have many sources. Previous work on
comparison of the emissions inventory for the Houston
ship channel relied on simple bar charts to determine the
direction of sources (Henry et al., 1997). Later work of
this type should benefit from the methods presented
here. Nonparametric regression techniques could also be
used in other air quality applications, such as trend
analysis of time series or simply providing data
smoothing for exploratory analysis of air quality data.

This work has demonstrated the usefulness of non-
parametric regression of air quality data on wind
direction. Nonparametric regression allows for accurate
determination of the wind direction of maximum
concentration. However, ground level concentrations
are function of factors other than wind direction. For
elevated sources, ground level concentrations can be a
complex function of emission rates, wind speed and
atmospheric stability. Indeed, scenarios could be con-
structed where the direction of the maximum average
concentration does not correspond to the direction of
the source. Such situations are probably rare, but a
method that included other parameters such as wind
speed would be desirable. Simultaneous nonparametric
regression of concentrations on wind direction and wind
speed is possible and could help throw light on, among
other things, the distance to the sources and whether
the sources are ground level or elevated. This will be
the subject of a sequel to this paper. More can be done
with the confidence intervals to determine if a peak is
real or noise and to estimate the variance of the peak
location.
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